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The Attentional Blink refers to the finding that the perception of a target stimulus is often impaired when it is presented within a
temporal window of 200–500 ms following another successfully-perceived stimulus. This interesting phenomenon has attracted
much research in the fields of attention and perception but has also inspired the implementation of several computational models. In
the present study we have implemented a model of selective attention that is capable of modelling a variety of findings related to the
Attentional Blink. Importantly, the model produces synchronization of neural activity to simulate the interaction between a low-level
visual system and a high-level goal-maintenance system during the deployment of attention. Synchronization of neural activity within
and across brain areas is typically observed when carrying out various tasks that involve the attentional processing of information.
Thus, the model provides a neurally and computationally plausible account for the Attentional Blink and potentially other attentional
tasks.

Keywords: Neural network, coincidence detector neurons, visual selective attention, attentional blink.

1. INTRODUCTION

Performing the various tasks of daily life entails selecting from
the vast amount of information registered by our sensory sys-
tems only what is relevant to the task at hand and discarding
the rest. The mechanism that allows us to do so is generally
known as selective attention. Selective attention is often por-
trayed as a gatekeeper responsible for selecting which stimuli
will gain access to a capacity-limited memory store known as
working memory (Awh, et al. 2006). Information represented
in working memory is used to control behavior, e.g., to pre-
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pare and execute motor responses, produce verbal responses
etc. Attention can be guided on the basis of both top-down
and bottom-up information reflecting the interplay of external
stimulation with internal motivations. Evidence from single-
cell recordings suggests that volitional shifts of attention are
associated with neural signals in the prefrontal cortex while
the exogenous orienting of attention correlates with activity in
the visual cortex of the brain (e.g., Buschman & Miller, 2007).

A number of recent neurophysiological studies have shown
that synchronization of neural activity in the brain occurs dur-
ing the deployment of selective attention (Gruber et al., 1999;
Steinmetz et al., 2000). For example, Fries et al. (2001)
found increased gamma frequency synchronization (i.e., syn-
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chronized activity at around 40Hz) of neurons in areaV4 of the
brain of macaque monkeys when they attended target stimuli.
Increased synchronization of neural activity is also observed
across brain areas, reflecting possibly top-down influences
on the control of attention. For example, Saalmann et al.
(2007) recorded neural activity simultaneously from the pos-
terior parietal cortex as well as an earlier area in the visual
pathway of the brain of macaques during the execution of a
visual matching task. Findings revealed synchronization of
the activity in the two regions when the monkeys selectively
attended a location. More recently, Gregoriou et al. (2009)
have provided evidence for enhanced oscillatory coupling be-
tween areaV4 and an area in the prefrontal cortex known as the
frontal eye field (FEF) when attending a stimulus. These find-
ings are compatible with Grossberg’s (1999) conjecture that
the temporal patterning of activities could be ideally suited
to achieve matching of top–down predictions with bottom–
up inputs. Synchronization is typically found in the gamma
frequency range (30-80Hz) and reflects oscillatory bursts that
are loosely locked to the stimulus (i.e., their latency varies
from trial to trial). This synchronization, also known as the
induced-gamma response, may more generally underlie the
construction of object representations by binding activity from
different areas of the brain (Tallon-Baudry & Bertrand, 1999).

In the present study we have developed and implemented
through appropriate simulations a model of selective attention
that produces synchronization of neural activity to model the
interaction between a low-level visual system and a high-level
goal-maintenance system. The model is used to simulate the
main findings from a well known phenomenon in the field
of selective attention, known as the Attentional Blink (AB;
Raymond, et al. 1992).

The AB occurs when the Rapid Serial Visual Presentation
(RSVP) is used to present stimuli at a speeded rate of about
100ms. Participants are asked for example to identify let-
ter targets among number distractors within the sequence of
presented stimuli (Figure 1; Chun & Potter, 1995).

The AB refers to the findings that when 2 targets are pre-
sented among a sequence of distractors, the correct identifi-
cation of the 1st target (T1) impairs the identification of the
2nd target (T2), provided that T2 appears within a brief tem-
poral window 200-500 ms following T1. In cases where T2 is
presented outside this temporal window, it is normally iden-
tified. Remarkably, when T2 immediately follows T1, no AB
is observed; this finding is known as Lag-1 Sparing. Figure
2 depicts the percentage of correct T2 reports as a function
of the Stimulus Onset Asynchrony (SOA; i.e., the temporal
interval between T1 and T2).

Several theories as well as computational models have been
formulated to account for both the AB and Lag-1 sparing.
Although a comprehensive review is beyond the scope of this
paper, the most popular models are reviewed next.

2. PREVIOUS THEORETICAL
ACCOUNTS FOR THE ATTENTIONAL
BLINK

Raymond et al. (1992) initially proposed an inhibition model
to explain the AB phenomenon. According to this model,

while T1 is being processed any further visual processing is
inhibited. This inhibition prevents confusion of T1 with other
stimuli. In essence, the model suggests that all stimuli that are
presented during the period of inhibition are not processed at
all. However, this suggestion is not supported by empirical
research. As Isaak et al. (1999) pointed out, several studies
provide evidence that stimuli following T1 are semantically
processed. For example, in a study recording Event-Related
Potentials (ERPs), Luck et al. (1996) had participants report
whether T2 matched semantically a word stimulus that was
presented before the RSVP sequence. Although identifica-
tion of T2 was reduced when it followed T1 by 250 ms, an
N400 ERP component for T2 was still observed. As the N400
is generally considered an index of semantic mismatch, its
presence suggests that T2, despite not being detected, was
nevertheless semantically processed.

Isaak, et al. (1999) proposed an alternative model to ac-
count for empirical findings on the AB. This model, which
is based on the interference between the neural activities of
stimuli, assumes that representations of presented stimuli are
created and compared to internal templates that define the fea-
tures of the targets. When a match occurs between a stimulus
and a template, the perceptual and conceptual characteristics
of the stimulus receive further processing for which a pool of
limited resources is engaged. This processing is assumed to
take about 500 ms and has been termed by Ward et al. (1996)
as the attentional dwell time. According to Isaak et al. (1999),
all items that are presented within this dwell time compete
for access to short-term memory. Therefore, T2 has to over-
come strong interference from the distractors that precede it
as well as any distractors that follow it within the dwell time.
As a result of this interference, an incorrect item may often be
selected for report in lieu of T2.

Chun and Potter (1995) proposed a two-stage model for the
AB. During the first stage of rapid detection all stimuli are
processed and their features are analyzed. Transient concep-
tual representations are thus constructed in this stage for all
stimuli and potential targets are selected. The second stage
of the model involves additional limited-capacity processing
that is required to build a more enduring representation of the
target. An important assumption for this model is that this
second-stage processing cannot begin unless the first-stage
processing is concluded. As a result, when T2 is presented
within the 200-500 ms temporal window, it can be detected
by the first-stage but its second-stage processing is delayed
until T1 is fully processed. This delay, however, increases the
probability that T2’s representation fades from the system.
Thus, Chun and Potter (1995) attribute the AB deficit to the
processing that is needed to consolidate T1 in memory.

It should be noted that a similarity between the models of
both Isaak et al. (1999) and Chun and Potter (1995) is that they
both explain the AB on the basis of resource depletion. That
is, they assume that a limited processing resource is allocated
to T1 with spare resources spreading towards other stimuli
only when available. However, as pointed out by Di Lollo
et al. (2005) resource depletion models predict a monotonic
decrease of the AB effect as lags progress instead of the non-
monotonic U-shaped functions that are typically reported by
RSVP experiments. That is, these models cannot account for
Lag-1 Sparing, at least without any additional assumptions.
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Figure 1 The use of the RSVP paradigm in attentional blink studies. Participants are asked to identify targets T1 and T2 that are presented, with a manipulated
SOA, within a sequence of distractors.

Figure 2 The basic curve from attentional blink studies based on the behavioral data from Chun and Potter (1995) showing the percentage of correct T2
identification given the successful identification of T1 as a function of SOA.

Lag-1 Sparing can be accounted by these models by allow-
ing for the simultaneous (or near-simultaneous) processing
of T1 and T2. In the case of the Isaak et al.’s (1999) model
this is achieved by postulating the presence of an attentional
gate that opens rapidly when T1 is presented but closes rather
sluggishly allowing thus the stimulus at Lag 2 to enter.

Di Lollo et al (2005) proposed an alternative model to ex-
plain the AB. The model attributes AB to the temporary loss
of control (TLC). Specifically, Di Lollo et al. suggested that
in the RSVP paradigm the system responsible for processing
visual input is initially configured based on endogenous sig-
nals to anticipate the features of T1. Once T1 is presented, the
system is involved in stimulus processing and cannot there-
fore issue endogenous control signals in order to reconfigure
its filter to the features of the T2. However, during this time,

exogenous information can modify the filter. If T2 has simi-
lar features with T1 and is presented at Lag 1 then it can be
processed based on the filter’s initial configuration. However,
if a distractor is presented at Lag 1 then the filter is altered
exogenously, so if T2 is presented at Lag 2 it will no longer
be detected. In a series of behaviour experiments Di Lollo
et al. (2005) provided evidence for the TLC hypothesis. An
aspect of this model that is important for the goals of the
computational model we have implemented here is the fact
that it explains the AB effect and Lag-1 Sparing by propos-
ing an interaction between bottom-up information contained
in the visual input and higher-order endogenous signals rep-
resenting expectations. These signals presumably originate at
higher brain regions such as the prefrontal cortex.
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3. COMPUTATIONAL MODELS FOR
THE AB

In addition to the various theoretical accounts for the AB, sev-
eral computational models have been implemented to simulate
the AB findings.

One such model is the CODAM model which was proposed
by Taylor (2002) and was used to simulate findings from the
AB by Fragopanagos, Kockelkoren, and Taylor (2005). An
important assumption in the CODAM model is that attention
functions in the brain as a general control system; therefore,
a control engineering approach is followed in the model. The
model in its initial form is composed by several modules on the
basis of neurobiological theories of attention. First, the Input
Module represents the neural activity at very early stages of
visual hierarchy and it has its output directly connected to the
Object Map, where the specific neural activity representing
information is registered. The Input Module also activates the
Goals Module which guides the top-down deployment of at-
tention. An Inverse Model Controller (IMC) is also included
to generate an attention control signal for the amplification
of the attended stimulus activity based on the activity in the
Goals Module. The model contains also a Working Memory
buffer whose contents define what information is available for
report as well as a Corollary Discharge buffer which uses a
copy of the attention control signal to predict forthcoming in-
put by pre-activating the buffer working memory site. Finally,
a Monitor Module provides a measure of the error occurring
during an attention movement by comparing actual and de-
sired attentional movements.

The CODAM model simulates the AB effect by allowing
inhibitory signals towards the Corollary Discharge nodes dur-
ing the time the Working Memory module is occupied. As
a result, when T1 is active in working memory, all Corollary
Discharge nodes are turned off.

This prevents other stimuli from getting through and inter-
fering with the processing of the first target. Therefore, if T2
appears within the specific time window when the Corollary
Discharge nodes are ineffective, no Working Memory pre-
activation will occur and thus T2 will not be able to reach
awareness.

Another influential AB model is the Simultaneous
Type/Serial Token model (ST2) proposed by Bowman and
Wyble (2007). The model consists of two processing stages
of neural activity representing visual stimuli. The first stage
includes parallel visual processing while the second stage en-
codes information into working memory in a serial manner.
In order to encode the visual stimuli the model employs two
factors referred to as types. These types provide information
about the feature properties of an item as well as tokens to
mark the occurrence of visual stimuli. The first stage in the
ST2 model is responsible for implementing the standard vi-
sual processing. That is, during this stage the visual features
of stimuli are extracted and each stimulus is semantically cat-
egorized. As processing during the first stage takes place in a
parallel manner, the system may simultaneously process mul-
tiple items with little interference between them. However,
a durable representation and thus access to working memory
is only achieved when an item makes it to the second stage.

Thus, the second stage can be considered as the entrance to
working memory and in contrast to the first stage, it imposes
constraints that arise from the fact that the system attempts
to associate items with discrete episodic contexts. Between
the first and the second stage there is a salience filter which
can be seen as an intermediate component responsible for en-
hancing task-relevant items and enabling them to progress into
the second stage. Additionally, the saliency filter ensures that
task-irrelevant items do not reach Stage 2. However, despite
the amplification of the neural activity of a salient item by
the salience filter, the authors of the model suggest an addi-
tional mechanism similar to the control signal suggested by
the CODAM model. More precisely, when an item passes
the salience filter in a strongly active form, a separate mech-
anism represented by the Transient Attentional Enhancement
(TAE) will provide a temporally brief (but spatially specific)
enhancement. This helps the item to proceed into a later level
of Stage 1 and subsequently into working memory. The TAE
in the model is realized with a mechanism that the authors
termed the blaster. For the simulations of the AB, the first tar-
get initially triggers the blaster. The blaster will then enhance
the first target (T1) as well as a subsequent item before it is
held offline as long as it is necessary for T1 to be encoded.
This takes place so that the second target (T2) is prevented
from interfering with T1. Thus, if T2 arrives during this time
it will receive no blaster enhancement and will therefore fail
to reach awareness.

A model that uses a slightly different approach than the CO-
DAM and the ST2 models is the Global Workspace Model of
Dehaene, et al. (2003). This model is biologically detailed
and anatomically prescribed. The general functionality of the
model is based on the competition between stimuli to engage
a global workspace access. However, stimuli first need to
pass through neural processing pathways that originate from
early sensory regions to higher association areas of the tem-
poral, parietal, frontal, and cingulated cortex. The authors
suggest that when a stimulus accesses a sufficient number of
workspace neurons, the activity of the neurons becomes self-
sustained. Thus, it can be broadcasted via long-distance con-
nections to different areas and create therefore a global and
exclusive availability for a specific stimulus. At this point,
the stimulus is considered as having reached consciousness.
Another important characteristic of the model is the inhibition
that is exerted by neurons processing a stimulus that has ac-
cessed workspace towards other surrounding workspace neu-
rons.. Unlike the CODAM and the ST2 models, the Global
Workspace Model has no control signal to amplify neural ac-
tivity. Instead, when intrinsic fluctuations are in phase with
stimulus presentation, the total activation is enhanced. This
results in biasing neurons of adjacent areas and therefore in-
creasing the probability for the entire network to fall in a global
active state. Furthermore, global activity can be more easily
achieved when there is “resonance” between bottom-up sen-
sory information and top-down signals.

Recently, Taatgen (2009) implemented using the ACT-R
cognitive architecture a model for the AB that attributes the
effect to an overexertion of cognitive control. ACT-R includes
a procedural memory store that contains production rules in
the form of “if....then” statements. According to this model,
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while a target is being consolidated in memory, a production
rule fires to inhibit target detection. As a result, no target can be
detected while other information is being consolidated. The
model of Taatgen (2009) is thus similar to other models of
AB (e.g., the CODAM model) in that it includes a mechanism
that postpones the processing of other information while T1
is processed. A similar mechanism is included in the present
model which is described next.

4. THE PROPOSED SYNCHRONIZA-
TION MODEL OF THE AB

4.1 Overview

In line with Global Workspace Model of Dehaene et al.
(2003), the proposed model is constructed with the assump-
tion that the resonance of incoming stimuli with spontaneous
or top-down brain activity is essential to create a perception.
In contrast with the Global Workspace Model, but in line with
the CODAM (Fragopanos et al., 2005) and ST2 (Bowman &
Wyble, 2007) models, our model generates a control signal
that amplifies the neural activity of the stimulus that is to be
selected.. In addition, our model provides a mechanism that
allows the temporary suppression of target detection while
working memory is occupied; such a mechanism is included
in both the CODAM model and the threaded cognition model
of Taatgen (2009). The novelty of the proposed model is that
it models various empirical findings related to the AB while
producing synchronization of neural activity during the de-
ployment of attention. As discussed in the introduction, the
presence of synchronization is reported by many neurophysi-
ological studies and it have even been proposed as the activity
underlying the construction of object representations (Tallon-
Baudry & Bertrand, 1999). Thus, the present model relies
on previous accounts for the AB but also on what is currently
known about the processing of visual stimuli by the brain, to
provide biologically-plausible explanation for the main find-
ings on theAB.The model is presented schematically in Figure
3.

The model comprises of two processing stages. The first
stage is responsible for the initial processing of visual stim-
uli based on the saliency filters in the primary visual cortices
while the second stage of processing is more related to top-
down interference. Stimuli are represented as spike trains
whose bins are marked with 1’s and 0’s representing the pres-
ence or absence of an action potential (see section 3.2.2). The
saliency of stimuli determines the firing rates (i.e., the fre-
quency of spikes) of the spike trains that represent the stimuli.
To that respect, the primary visual cortices can be regarded as a
saliency map for incoming stimuli (Zhaoping 1999). Encoded
stimuli compete for access to working memory with forward
and lateral inhibition among stimuli influencing the strength
of the neural response. In the second stage of processing,
information from the first stage passes through the semantic
correlation control module. In this stage of processing, a net-
work comprised of integrate and fire neurons combined with
coincidence detection neurons measures the degree of corre-
lation between the neural activity representing visual stimuli
and that of a module that maintains the current goals. Based

on the degree of correlation a control signal is generated in
this module which can be linked to the combined firing of a
neural network. Therefore, an amplification or attenuation of
the neural activity that corresponds to each incoming stimulus
may take place depending on the control signal. Subsequently,
a working memory node will be excited causing inhibition to
other working memory nodes. After a threshold is passed, the
working memory node will fire an action potential to represent
the perceptual awareness of a specific visual stimulus and the
preparation of a response.

4.2 Detailed description of the model

The two systems of the model correspond to the early vi-
sual areas at the occipital regions of the brain (e.g.,V1) and
the higher order fronto-parietal network responsible for main-
taining goal-directed activity. The interaction of these two
systems is accompanied by synchronization of neural activ-
ity and results to the selection of particular stimuli for further
processing. Thus, selective attention is modelled as the inter-
action between the processing of low-level information and
the maintenance of endogenous expectations. We now dis-
cuss the main aspects of the model.

4.2.1 Neural elements of the model

The basic computational units used in the model are simple
graded response neurons with a membrane equation

τm

dV

dt
= Eleak − V − RmI (1)

where V is the membrane potential of each neuron and τm is
the time constant.

The membrane potential can be seen as a measure of the
extent to which a node is excited. In equation 1, Eleak, cor-
responds to a leak current that drives the node’s membrane
potential towards the resting potential. The total current I is a
simple combination of excitation and bias currents that cause
increase of the membrane potential as well as inhibition cur-
rents that reduce the membrane potential of the node. The total
summation of the excitatory and inhibitory currents influences
(based on the corresponding weight) the actual membrane po-
tential at each time instance. Rm is the total membrane resis-
tance of the neuron.

The solution of the differential (1) is shown in (2) below,
which explains how V evolves according to time.

V (t) = Eleak + RmI + (V (0) − Eleak − RmI)e−(t/τ ). (2)

The generation of a spike is described by a single rule:
whenever V exceeds a specific threshold (Vth), a spike is
emitted and V resets to its initial condition or resting potential
Vreset.

For the present simulations, the following values have been
used:

τm = 30 ms

Eleak = Vreset = −65 mV

Vth = −65 mV

Rm = −90 M�.
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Figure 3 The proposed computational model.

Additionally, an absolute refractory period of 2 ms was applied
each time a neuron fired a spike.

In the second stage of processing the model contains co-
incidence detection neurons. Coincidence detection is a very
simplified model of neuron, which fires only if it receives two
or more simultaneous inputs. In the traditional view, coin-
cidence detector neurons can be modelled with a very short
membrane time constant τm so that the membrane potential
can change rapidly. Another way to model coincidence detec-
tion can be based on separate inputs converging on a common
target. For example, let’s consider a basic neural circuit of
two input neurons with excitatory synaptic terminals A and B
converging on a single output neuron C (Figure 4). If we as-
sume that each spike is represented by a pulse with amplitude
equal to1 then the coincidence detector neuron C will only fire
if its input is greater than 1.

4.2.2 Temporal coding of input

Each stimulus that enters the visual field is represented by a
stream of binary events (called spike trains) that represent the

occurrence of an action potential or a spike, with 1s and 0s sig-
nifying respectively the presence or the absence of a potential.
Two important factors determine the pattern of spike trains.
First, the firing rate or the frequency of spikes is determined
based on the saliency of the stimulus. Second, the exact tim-
ing with which each spike appears is produced by representing
each visual stimulus as a 10 ms sequence of 1s (spike) or a 0s
(no-spike) occurring at every millisecond (Figure 5).

As the correlation control module of the second stage of
processing relies on the consequences of this temporal cod-
ing, it is important for the simulations to generate sets of syn-
thetic spike trains with controlled rates and cross-correlations.
The methodology used for the generation of the spike trains
to represent each incoming stimulus follows the algorithm
proposed by Niebur (2007) and Mikula and Niebur (2008).
This algorithm generates spike trains whose mean rates as
well as the cross-correlations of pairs of spike trains are free
parameters that can be selected independently. The cross-
correlation between any two of these spike trains can be se-
lected to be minimal indicating completely independent spike
trains or maximal representing identical spike trains. More
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Figure 5 Coding of the incoming visual stimuli. Each stimulus is represented with a series of spikes that take values of 1 and 0 that correspond to the presence
or absence of action potentials respectively.

specifically, it is assumed that all time bins (or firing times)
are independent and that each spike train consists of a series
of 0s and 1s. If, for example, we consider two spike trains
A and B those can be seen as a Bernoulli processes with the
probability PA = <A> for spike train A to have the value 1 in
each time bin (0 ≤ PA ≤ 1) and 0 occurring with probability
1 − PA. In the same manner, spike train B can be generated.
If now it is desired that these two spike trains have a specific
degree of correlation between them, the state of spike train A
can be switched (with a probability q) to that of B. That is,
each bin in spike train A has a probability q to have the same
state as the spike train B.

4.2.3 Representation at the Primary visual cortices
(First stage of processing)

The spike trains that represent each incoming stimulus were
generated based on a certain probability as explained in the
previous section, defining thus their initial firing rate. Both
targets and distractors were generated with the same probabil-
ity to have a spike at each time bin, since both have the same
saliency (i.e., they have the same brightness, intensity etc.).

In the first stage of processing, every stimulus that enters
the visual receptive field, will try to “win” the race to access
working memory. Therefore it acts in an inhibitory manner to-
wards all the other competing stimuli. In the RSVP paradigm
used for the AB experiments each incoming stimulus will re-
ceive inhibition from the stimuli that appeared before it as well
as those that follow. This assumption is consistent with sev-
eral studies of single cell recordings (e.g., Keysers & Perrett,
2002, Rolls et al. 1999) that show the effect of masking on the
firing rate of neurons (that correspond to visual stimulus) in

the temporal cortex of monkeys. Masking in visual perception
tasks occurs when the perception of one stimulus (i.e., the tar-
get) is influenced by the presence of another stimulus. Mask-
ing can be either forward or backward depending on whether
the mask precedes or follows the target (Moore, 1998). Ac-
cording to Seiffert and Di Lollo (1997) backward masking
causes stronger inhibition than forward masking. This find-
ing is again consistent with the inhibitory interactions between
the neurons in the first stage of processing due to the fact that
feed-forward inhibition causes stronger suppression to the al-
ready presented stimulus. On the other hand, lateral inhibi-
tion between the neurons of the already presented stimulus
with the corresponding neurons of the proceeded stimulus is
relatively low. Thus, competition between the RSVP items,
represented by lateral and feed-forward inhibition, will have
the first impact on each of the neural responses.

4.2.4 Top-down influence and synchronization of neu-
ral activity

In selective attention tasks such as those that employ visual
search or the RSVP paradigm, the observer knows beforehand
what the target is. As suggested by the interference model
of Isaak et al. (1999), the present model creates templates
containing the features of the targets and uses them to evaluate
visual input. In our model, these target representations are
maintained in the endogenous goals module. Therefore, spike
trains that represent the target letters are initially generated and
saved in the endogenous goals module.

After the first stage of processing and the modulation of the
firing rate from the competitive inhibition, the spike trains are
adjusted again by the saliency filters, based on their charac-

vol 0 no 0 June 2009 29



A NEURAL NETWORK MODEL OF THE ATTENTIONAL BLINK PHENOMENON

teristics. Let’s consider, for example, a spike train A corre-
sponding to a target letter. The specific spike train should have
strong correlation with the temporal patterns of the spike trains
that describe a target letter in the endogenous goals module.
Thus, the states of the spike train A will switch to the states
of the spike train stored in the endogenous goals with a cer-
tain probability q. The probability q can actually be seen as
the degree of resemblance to a specific stimulus. Note, how-
ever, that this procedure modulates the timing of spikes within
the spike train while the firing rate of the spike train remains
unchanged.

The basic component of the second stage of processing is
the Correlation Control Module (CCM) which is mainly com-
prised of a network of coincidence detector nodes combined
with basic integrate and fire neurons. Therefore, the CCM is
able to capture the correlation between spike trains coming
from the visual input and spike trains originating from the
internal goals and produce a relevant control signal (Figure
6).

For example, if a visual stimulus has strong correlation with
the template of the target letter then its neural activity is ampli-
fied. This amplification is a result of a multiplicative process
between the signal generated by the CCM and the neural ac-
tivity of the corresponding stimulus. The control signal is
generated by a node of the CCM that represents the combined
firing of a neural network. For this reason a relative refractory
period exists after the firing of the CCM specific node.

The strength of the generated control signal may have many
variations which are mainly based on the total firing of the co-
incidence detector neurons of the CCM. That is, if the two
signals are correlated then the coincidence detector neurons
will fire more frequently and will consequently elicit a stronger
control signal. However, if a stimulus has very little correla-
tion with the endogenous spike trains, the node responsible
for firing the control signal in the CCM will fire with reduced
strength. Furthermore, in the case where the presented stim-
ulus is a target letter, then the strong correlation between the
two streams of neural activity will subsequently cause a sig-
nificant synchronous firing of the coincidence detector nodes.

Finally, after the handling of the neural activity of each
incoming stimulus, a specific working memory node will be
excited. After a specified threshold is passed, the working
memory node will fire an action potential indicating percep-
tual awareness for the visual stimulus. At the same time the
corresponding signal will act in an inhibitory manner towards
the node that generates the control signal in the Correlation
Control Module (Figure 7). This can be seen as a safety mech-
anism to prevent multiple stimuli from entering working mem-
ory while it is occupied with the processing of the previous
stimulus.

5. SIMULATIONS AND RESULTS

The model was run under three conditions. One was the typ-
ical AB condition in which T2 follows the T1 after a fixed
delay (SOA of T2) while distracting numbers are presented
in-between the two targets as well as after T2. We will call
this condition the no-blanks condition as all positions in the
RSVP sequence were occupied by stimuli. In another condi-

tion, termed Lag 1 blank, neither a target nor a distractor was
presented at Lag 1. Previous research has shown that the AB
is eliminated when T1 is not followed by a distractor (Gies-
brect & DiLollo, 1996; Seiffert & DiLollo, 1997). Including
this condition enables us to examine whether the model is able
to capture this finding. In a third condition, Lag 2 blank, a
blank was presented 200ms after T1 (i.e., after a distractor
was presented at Lag 1). This condition predicts the presence
of AB.

For the simulations, T1 was always presented at time t = 0
and T2 at each of the subsequent time lags. For each lag that
T2 was presented, the simulations where run for 50 times.
Results revealed a clear match between simulations (Figure
8a) and the patterns of finding obtained from previous studies
(Figure 8b).

As predicted by the literature, an AB effect was observed in
the no-blanks condition when T2 was presented at Lags 2, 3,
and 4 (i.e., the temporal window of 200-400ms). In addition,
Lag 1 Sparing was observed when T2 was presented either
at Lag 1 or after lag 4. As expected based on the findings of
Giesbrect and DiLollo (1996) and Seiffert and DiLollo (1997),
the AB effect was eliminated in the Lag 1 blank condition. In
contrast, a normal AB effect was obtained in the Lag 2 blank
condition.

Different features of the model are responsible for simu-
lating the AB effects found in the literature. The first is the
competitive inhibition between incoming stimuli during the
whole process. Specifically during the first stage of process-
ing, the inhibition caused by the masking stimuli towards the
target modulates its neural activity. The inhibition in the first
stage of processing is important because it actually happens
at very early stages of visual processing, before any top-down
interference and thus makes no distinction between distractors
and targets.

The second feature and perhaps the most important compo-
nent of the model is the Correlation Control Module (CCM)
that generates the appropriate control signal. However, one
important mechanism of the model that has a key role in the
reproduction of the typical U-shape curve of AB experiments
is the interaction between the signals generated by the work-
ing memory node (that represents perceptual awareness) with
the control signal generated by the CCM.

For the case where a blank is presented at Lag 1 two mecha-
nisms contribute to the attenuation of the blink. As it has been
mentioned previously, the specific node of the CCM that fires
the control signal represents the combined firing of a neural
network and is thus influenced by a relative refractory period.
However, the specific node fires an analogous signal for all in-
coming stimuli regardless of whether they are within the target
or the distractor set. The effect of the refractory period in the
strength of the following signal combined with the inhibitory
interaction between the incoming stimuli in the first stage of
processing are the basic features of the model that cause this
attenuation

6. DISCUSSION

As seen in the previous section, the model was capable of
simulating a range of findings from the AB literature includ-
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Figure 6 The functioning of the Correlation Control Module.
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Figure 7 Working memory inhibition towards the Correlation Control Module.

ing the basic AB effect, Lag 1 Sparing, and the elimination
of the AB effect with a blank is inserted at an appropriate lo-
cation. Importantly, the model accounted for these empirical
findings using mechanisms that are at present popular among
neuroscientists and cognitive scientists.

First, the model incorporates temporal coding of input. This
is an idea proposed by Crick and Koch (1990) and it allows se-

lecting stimuli on the basis of synchrony across neurons. Ac-
cording to Crick & Koch, the change of the structure of spike
trains that fall within the focus of attention represents selec-
tive attention at the neural level. As discussed by Niebur et al.
(2002), selecting stimuli by adjusting the temporal structure of
attended stimuli is a powerful mechanism at it allows selection
without altering the firing rates of neurons. Although selec-
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(a)

(b)

Figure 8 (a) Simulation Data from the proposed model. (b) Typical behavioral data from Attentional Blink studies (data adopted from Chun & Potter, 1995).

tion through modifying firing rates would also be a powerful
mechanism, it is criticized for interfering with information
that is presumably maintained in the firing rates (Niebur, et al.
2002). Specifically, Niebur and Koch (1994) suggested that
attentional modulation by the saliency map in the first stage
of processing influences the timing of the spikes and neurons
within the focus of attention tend to fire synchronously.

As the presence of synchronization of neural activity within
and across brain is well documented in the area of selective
attention, we have adopted the idea of temporal coding for the
present model. As the model was capable of simulating the
AB findings quite well, we can argue that temporal coding is a
plausible mechanism for the encoding of visual information.

Second, the model involves a first stage of processing in
which incoming stimuli are allowed to interfere with one

other. Competitive inhibition, such as the one incorporated
in the model, is known to take place at various levels of vi-
sual processing including the pyramidal cells ofV1 (Zhaoping
1999).

Third, neural activity at the bottom-up first stage of process-
ing is allowed to receive influence from the endogenous goals
module. This way the model incorporates the well-known in-
teraction between low-level information contained in incom-
ing stimuli with high-level cognitive operations. Within the
neuroscience literature there is indeed evidence that neural ac-
tivity is affected by top-down attention in a rather later stage
of processing, mostly in the area V4 of the brain which is con-
sidered an intermediate stage in the visual object-processing
pathway in the occipital cortex (Moran & Desimone, 1985;
Reynolds et al. 2000).
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The model initially encodes all visual input with selection
occurring gradually within the information processing stream.
What gets selected is influenced by the result of the inhibitory
interactions among visual input at the first-stage of processing
and is determined after the influence – facilitatory or inhibitory
– of internal volitions at a subsequent stage. This interaction
between bottom-up and top-down signals may occur in area
V4 of the visual cortex (Ogawa and Komatsu 2004).

Several aspects of the model can be linked directly with
findings from electrophysiological studies of attention. The
first distinguishable signals in these studies are obtained
around 130-150ms post stimulus and are known as the P1/N1
signals. It is generally believed that these signals correspond
to the initial processing that takes place in the visual cortex
and the early activation of the incoming visual stimuli. At
about 180-240 ms post-stimulus the P2/N2 signals are ob-
served. These signals which are more easily obtained us-
ing Magnetoencephalography (MEG), (Ioannides and Taylor,
2003), have been proposed to represent control signals for the
movement of attention (Hopf et al., 2000; Taylor 2002). In
fact, several computational models for the AB contain mech-
anisms that are linked to these signals. For example, the CO-
DAM model of Taylor (2002) uses the N2 signal as the signal
from the controller that modulates the direction of the focus of
attention. Moreover, in their Simultaneous Type Serial Token
(ST2) model, Bowman and Wyble (2007) argue that when the
visual system detects a task-relevant item, a spatially specific
TransientAttentional Enhancement (TAE) called the blaster is
triggered. This blaster is also linked to the P2/N2 component.
In addition to P1/N1 and P2/N2, the P300 component which is
present at about 350–600 ms post-stimulus is often regarded as
an index of the availability for report of the attention-amplified
input arriving from earlier sensory cortices to the associated
working memory sensory buffer site. Finally, the N400 sig-
nal which is related to semantic processing is observed at
around 400ms. In the present model, the spike trains gener-
ated for each stimulus during encoding can be linked to the
early P1/N1 signals. The output of the Correlation Control
Module can associated with the N2/P2 signal and even more
specifically with the N2pc component. The N2pc component
has been considered by previous research as an index of dis-
tractor suppression in attentional tasks (Eimer 1999). Finally,
the P300 which represents perceptual awareness of a stimulus
can be associated with the activation of the working memory
node in the model. The activation of this node also suppresses
the firing of the Correlation Control Module.

Studies recording Event-Related Potentials (ERPs) with the
RSVP paradigm have revealed important findings for the AB
effect. For example, they have shown that even when T2 is
not correctly identified, the P1/N1 and the N400 can be still
obtained. On the other hand, the N2 and P300 components
are no longer present (Sergent et al, 2005). This suggests that
in spite of having no perceptual awareness of the presence of
T2, people do process it semantically to at least some extent.
The present model accounts for these findings by allowing all
input to be semantic processed at the CCM. Thus, a T2 which
is not available to perceptual awareness can still elicit an N400
in the event that is mismatches the semantic context.

In addition to documenting the presence or absence of ERP
components, eletrophysiological studies have revealed im-

portant findings regarding induced gamma activity when the
RSVP paradigm is used. For example, Nakatani et al. (2005)
have provided evidence that synchrony of neural activity in the
40-Hz range was substantially increased throughout the scalp
for trials in which the T2 was detected compared to those tri-
als that it did not. This finding is compatible with previous
studies documenting an association between gamma-induced
activity and selective attention. Furthermore, it also agrees
with Tallon-Baudry & Bertrand’s (1999) claim that induced-
gamma activity is the neural basis of the construction of object
representations by binding activity from different areas of the
brain. In line with this empirical finding, the model imple-
mented here is able to produce synchronization of activity
across brain areas in order to select stimuli for attention. As
with the empirical results, increased synchronization for T2 is
obtained in the model when T2 is detected that when it is not.

In closing, it should be noted that although the model here
was implemented to simulate the AB effect, it can be viewed
as a more general model of selective attention as none of the
mechanisms it contains is specific to the AB. The model was
successful in simulating several findings from the AB litera-
ture. However, a more critical evaluation of the model can be
made by examining whether the model can account, without
modification, for other findings in the attention literature.
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