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Abstract. A biologically plausible neural network model of selective attention 
has been implemented to account for discrepant findings on the source of dis-
tractor interference in visual search tasks. The model successfully simulated the 
findings from an experiment by Benoni and Tsal (2010) documenting the  
effects of dilution on distractor interference. In conjunction with previous im-
plementations of the model, we have been able to offer a unifying account that 
settles the controversy between the Perceptual Load and the Dilution theories of 
selective attention.  
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1 Introduction 

Performing the various tasks of daily life entails selecting from the vast amount of 
information registered by our sensory systems only what is relevant to the task at 
hand and discarding the rest. The mechanism that allows us to do so is generally 
known as selective attention. While some theories of selective attention argue that 
selection of relevant stimuli occurs at early stages of processing (e.g., Broadbent, 
1958), others claim that it takes place at a later stage, and only after the meaning of 
stimuli has been processed (e.g., Deutsch & Deutsch, 1963).  

As a solution to the early vs. debate concerning on the locus of selection, Lavie and 
colleagues (e.g., Lavie & Tsal, 1994) proposed the Perceptual load theory (PLT, La-
vie &Tsal, 1994) of attention.  The PLT claims that selection of stimuli may take 
place early or late depending on the perceptual load of the visual scene.  

In a paradigmatic study supporting the PLT, Lavie and Cox (1997) manipulated per-
ceptual load by means of a difficult or easy visual search with distractor interference 
being the dependent measure. Participants in the high load condition searched for one of 
two target letters (X or N) among 5 similarly-shaped letters arranged in a circular array. 
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In the low load condition, the participants searched for the target that was surrounded by 
five instances of the letter “O”.  In both conditions, a distractor letter was presented to 
the left or to the right of the array. Depending on condition, the distractor letter could 
either be congruent with the target (i.e., the same letter as the target), or incongruent 
(i.e., the other target), or neutral (i.e., the letter “L”).  Results from this experiment that 
participants in the low load condition were slower to find the target in incongruent than 
congruent or neutral trials.  However, in the high load condition participants found the 
target equally fast in all congruency conditions. According to the PLT, this occurs be-
cause in the low load condition only minimum resources are consumed by the main task 
of identifying the target, which allows spare resources to spill over to the processing of 
the distractor. In that case, all stimuli are initially processed and selection must occur 
late. In the high load condition all available resources are consumed by the difficult 
visual search leaving no spare resources for processing the distractor. Thus, the distrac-
tor in this condition is excluded early on.   

Although many studies have provided evidence to support the PLT, a few studies 
however present results that challenge it. For example, using visual task similar to the 
one of Lavie and Cox (1997), Johnson, McGrath, and McNeil (2002) showed that 
when the target location was primed by preseting a 100%-valid cue ahead of the ar-
ray, the interference exerted by an incompatible distractor in the low load condition 
was significantly reduced compared to the uncued control condition. As the presenta-
tion of a cue does not alter the amount of spare resources available during the search, 
this result is problematic for at least a strong version of the PLT. 

In previous work of us (Neokleous, Koushiou, Avraamides, &Schizas, 2009), we 
implemented a computational model of selective attention and succesfully simulated 
both the findings from the basic load manipulations of Lavie and Cox (1997) and the 
modulating effects of cueing reported by Johnson et al., 2002. To do so, the model 
took into account the patterns of saliency of visual stimuli, their completion for cor-
tical representation, and the interaction of top-down factors. Through the simulations, 
we were able to provide a more concrete account for perceptual load effects and the 
possible neural mechanisms that give rise to them.  

Recently, a new theoretical account that resembles the one we presented with our 
model, was put forth by Benoni &Tsal (2010; see also Wilson, Muroi & MacLeod, 
2011). This theory, named the Dilution Theory (DT), proposes that the distractor is 
processed in both load conditions, yet distractor interference in the high load condi-
tion is eliminated due to dilution exerted by the non-target letters of the search array 
on the distractor. Empirical findings from studies using low load conditions with high 
dilution suggested that dilution, and not perceptual load, is the critical factor for the 
presence of distractor interference (Benoni & Tsal, 2010).    

In this paper we apply our model to conditions included in the study of Benoni and 
Tsal (2010), to examine whether the pattern of findings supporting the DT can be 
accounted for by our existing conceptualization of perceptual load. In one condition 
of the behavioral task, termed as the low load-high dilution condition, participants had 
to identify a red target among three other green neutral letters (or a green target 
among red neutral letters) when all four letters were presented on the four possible 
corners of an imaginary square centered on fixation. At the same time participants had 
to ignore a larger white flanker presented on the left of the visual scene. In the high 
load-high dilution condition the neutral letters and the target were of the same color 
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(red or green) while in the low load- low dilution condition the red (or green) target 
was presented along with the white distractor but without any neutral letters. The 
main finding reported by Benoni and Tsal (2010) was that distractor interference was 
eliminated in the low load-high dilution condition but not in the low load- low dilu-
tion and the high load-high dilution conditions. 

In the next sections we provide an overview of the model and we present simula-
tion data for the three conditions included in the Benoni and Tsal (2010).  

2 The Computational Model 

The computational model is a spiking neural network model that has been previously 
used in similar form to simulate findings from other attentional paradigms (e.g, the 
attentional blink phenomenon, Neokleous, Avraamides, Neokleous, &Schizas, 2009, 
and the relation between attention and consciousness, Neokleous, Avraamides, 
&Schizas, 2011) The model is comprised of integrate-and-fire (I&F) neurons com-
bined with coincidence detector (CD) neurons and simulates attention as a continuous 
stream of neural activity that is initially based on bottom-up information and gradual-
ly incorporates biases from top-down processes. The graded response of the I&F neu-
rons is defined by the membrane eq. 1. 
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where V is the membrane potential of each neuron, τmis the membrane time constant, 
EL is the resting potential of the membrane, Is(t) represents the total synaptic current 
and is a simple combination of pre-synaptic excitation and bias currents that increase 
the membrane potential, with inhibition currents that reduce the membrane potential 
of the node. The total summation of the excitatory and inhibitory currents influences 
the actual membrane potential at each time instance. Finally, Rm is the membrane 
resistance of the neuron.  

The inclusion of coincidence detector (CD) neurons in the model is inspired by 
neurophysiological evidence about the functional role of the pyramidal neurons which 
have been observed to respond best to the coincident activation of multiple dendritic 
compartments (Spruston, 2008). Traditionally CD neurons are modeled with a very 
short membrane time constant τm that can change rapidly.  However, another way to 
model coincidence detection is based on a simple case in which separate inputs con-
verge on a common target. More precisely, if Ψ(t) is a binary row vector denoting the 
states of neuron A and B at time t and C(t + 1) the state of neuron Cat t + 1, then the 
outcome of Cat t +1 can be expressed as: 

 ))(()1( θ−ΨΘ=+ ttC  (2) 

with Θ being the Heaviside step function, and θ the specific threshold for the number 
of pre-synaptic spikes that are needed to arrive synchronously in order for the output 
neuron C to induce a spike. 
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The structure of the model (Fig. 1) involves two stages of processing implemented 
through spiking neural networks (SNN). The first stage corresponds to the initial bot-
tom-up competitive neural interactions among visual stimuli and corresponds to the 
early visual areas in the occipital regions of the brain (e.g., V1, V2). The second stage 
of processing extends the neural pathway towards working memory and allows for 
relevant top-down goals (e.g. based on semantic information) to exert an influence on 
neural activity. 

 

 

Fig. 1. The different modules of the computational model of visual selective attention 

In the first stage of processing, the initial representations of any incoming stimuli 
are created in the model on the basis of a saliency map. The manipulation of visual 
activity by means of a saliency map in the early stages of visual processing is sup-
ported by numerous neurophysiological studies including findings that in the primary 
visual cortex and in area V1 in particular, a neuron’s response can be significantly 
suppressed or enhanced in correlation with stimulations in the vicinity of its receptive 
field (e.g. Nothdurft, Gallant, & Van Essen, 1999; Shibata et al, 2008).  In our model, 
we adopted a saliency map algorithm that was originally proposed by Koch and Ull-
man (1985). This algorithm was implemented by Walther and Koch (2006) into a 
Matlab toolbox (Saliency Toolbox - http://www.saliencytoolbox.net), and is used in 
the model for producing saliency values for spatial locations in the visual field. These 
values are calculated according to a simple transformation algorithm (eq.3) that links 
grayscale pixel values into frequency of spikes to establish the initial firing rates of 
the neurons that encode visual stimuli (see also Fig.2). 
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In eq. 3, FRsirepresents the firing rate of each of the 12 input neurons that correspond 
to the receptive field of stimulus Si. Max (Pj) is the maximum value of all the pixels 
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that correspond to stimulus Si, and 
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 is the total summation of the n pixel values 

(Pj) that correspond to stimulus Si. The terms α and β are weighting constants. The 
maximum value of the pixels for each stimulus reflects the general saliency of the 
stimulus while the summation value was used to incorporate the size of the stimulus 
in the calculations, since the model always uses 12 neurons to encode incoming sti-
muli regardless of their size. 

 

Fig. 2. Generation of initial firing rate according to the Saliency map algorithm 

In addition to saliency values, spatial top-down interactions are also considered in 
the first stage of processing. More precisely, when perceptual cues are used to prime 
the spatial location of an upcoming stimulus, top-down spatial factors in the model, 
will exert their influence on the initial firing rate of the input neurons. This interaction 
is compatible with findings from several studies documenting that cues may increase 
the neural activity of neurons that correspond to visual stimuli very shortly after the 
presentation of the cue (e.g., Shibata et al., 2008; Silver, Ress, &Heeger, 2007). 

The top-down effects in the second stage of processing are implemented in the 
model in a way that produces both rate amplification and synchronization of neural 
activity as suggested by neurophysiological evidence (e.g., Womelsdorf and Fries 
2007; Gregoriou, Gotts, Zhou & Desimone, 2009). More precisely, during a visual 
task, templates that contain features of targets are created and maintained in the endo-
genous goals module of the model and are used to evaluate the resemblance between 
incoming visual input and the target. The evaluation of each stimulus takes place by 
computing the correlation between spike trains representing the stimulus and the spike 
trains maintaining target identity in the endogenous goals module. This is performed 
in the Correlation Control Module (CCM) of the model (Fig.1).  

During the progression of neural activity through the two stages of processing, the 
encoded stimuli compete for access to working memory (WM) through forward and 
lateral inhibitory interactions (from the pools of inhibitory interneurons), resulting 
into modulation of the strength of their neural response.  
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3 Computational Simulations 

In this section simulation results are compared to the empirical findings of Benoni and 
Tsal (2010) in an attempt to account for dilution effects in perceptual load tasks.  

Fifty simulation trials were run for each of the combinations of load and compati-
bility in the three conditions (high low-high dilution, low load-low dilution, and low 
load-high dilution). Median latencies from the model are shown in Fig.4. As seen in 
the figure, the model successfully produced the pattern of latencies reported by Beno-
ni and Tsal (2010), although overall latencies from the simulations were slower than 
those in the experimental data1. Specifically, a compatibility effect (i.e., slower laten-
cy for incongruent vs. congruent distractors) was only produced in the low load-low 
dilution condition. Although latencies were overall shorter in the low load-high dilu-
tion condition than in the high load-high dilution condition, no difference between 
congruent and incongruent distractors was present in either condition.  

The successful simulation of the behavioral data relied on three aspects of the 
model. First, spatial top-down signals were allowed to interact with the neural activity 
of the neurons whose receptive field fell within the area of the imaginary square. This 
was done to simulate instructions to participants to search for the target within that 
area. Second, the saliency analysis using the saliency map algorithm produced differ-
ent values for each condition (Fig.3) leading to different initial neural activities for 
each stimulus in the display. 

  

 

Fig. 3. Output of the saliency map algorithm for the three conditions 

Finally, the neural activity of both the target and the distractor were biased in the 
second stage of processing due to their high correlation with the top-down signals 
maintaining the current goals (i.e., the identities of the possible targets).  

Based on the above, the target letter was able “win” the race to working memory in 
all three conditions, but with different average reaction time in each condition due to 
differences in the level of inhibitory neural interactions exerted among stimuli in the 
display. This was the case because the inhibitory interactions in the model depend on  
the level of neural activation that each stimulus has during its progression in the model.  

                                                           
1  No parameter tuning to the model described by Neokleous et al.. (2009) was carried out to 

achieve a closer fit with the experimental data in terms of overall latency. 
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Fig. 4. Simulation data from the model and experimental data from Benoni and Tsal (2010) 

4 Discussion 

The described computational model represents an attempt to provide a comprehensive 
and concrete account for perceptual load findings that is also able to simulate findings 
that pose challenges to the PLT. In the present study, we demonstrated that the model 
is capable of explaining the finding from dilution experiments based on what is cur-
rently known about the neural mechanisms of selective attention. The model does not 
rely on any formal definition of concepts such as high or low perceptual load, and 
dilution. Instead, based on the interactions between low-level saliency and top-down 
spatial and semantic goals, the model is capable of reproducing the empirical find-
ings. On one hand, the model includes continuous inhibitory interactions among the 
stimuli in the visual field whose relative saliency determines the strength of the inhi-
bitions that are exerted. On the other hand, the model allows for top-down signals to 
bias this competition by amplifying the activity of neurons representing stimuli that 
match the spatial and semantic goals. The model demonstrates that the by combining 
the effects of low-level visual information such the saliency of stimuli with top-down 
processing, one can provide a unifying account that settles the controversy between 
the PLT and the DT.  
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